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Abstract

This paper aims to introduce a new analytical framework for class identification

by applying a mixed method of simple mathematical modeling and Bayesian

statistical modeling. First, I constructed a simple mathematical model which

can explain the middle concentration tendency of class identification where

the majority of people tend to regard themselves as middle, assuming that

the succession of the same Bernoulli m-trials with success probability p de-

termines one’s subjective class identification. Second, I estimated parameters

of the model from SSM survey data by applying a Bayesian statistical model.

The distribution of latent success probability p and number of trials m was

estimated by the Markov Chain Monte Carlo method. I also analyzed differ-

ences in distributions of p and m among age cohorts and educational levels by

hierarchical models.

From the analysis, I found the following point: (1) approximately five trials of

fifty-fifty games with around 0.5 success probability describes well the observed

class identification distribution in 2015 data; (2) the Japanese postwar period

can be divided in two based on people’s subjective evaluations—the period of

expanding opportunity (1955 to 1975) and the period of high and constant

∗ The study was supported by JSPS KAKENHI Grant Number JP25000001 and 15K13080. The
author thanks the Social Stratification and Social Mobility (SSM) Research Committee of 2015
for the permission to use the SSM 1955-2015 data.
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success probability, but less chance of trials (from 1985); and (3) the different

games model on educational levels is always better in terms of goodness of

predictions than the common game model in each survey period. However,

these models were closest in terms of goodness of prediction in 1975 and 1985,

possibly indicating that during the “all middle-class society” period, people

evaluated their society almost the same as the common game where all players

have the same opportunities, but dierent luck.

Keywords: class identification, random walk, Bayesian statistical modeling

1 Introduction

Social psychological aspects of social inequality and social stratification, such as peo-

ple’s cognitions, attitudes, and emotions in an unequal or stratified society, can be

regarded as antecedent conditions of people’s rational choices or actions that, if aggre-

gated, would lead to macro (un)change in the society. Thus, it is crucially important

for micro-macro linkage approaches on social inequality to shed light on the social

psychological aspects as with other aspects of inequality.

Among social psychological features, this paper focuses on class identification. Class

identification is the extent to which people identify themselves as members of a certain

social class or stratum, and it has been one of the main subjects in social psycholog-

ical studies of social stratification. In this paper, I will introduce a new analytical

framework for class identification by applying a mixed method of simple mathematical

modeling and Bayesian statistical modeling, rather than the conventional frequentist

statistical analysis that typically applies regression analysis blindly.

First, I construct a simple mathematical model that explains one of the major

tendencies of class identification, that is the middle concentration tendency in which

the majority of people tend to regard themselves as middle. This is the life-is-like-a-

random-walk model where it is assumed that succession of the same Bernoulli m-trials

with success probability p determines one’s subjective class identification.

Second, I will estimate parameters of the model from empirical data by applying

a Bayesian statistical model. The Bayesian modeling enables us to construct more

flexible model which directly reflects the mathematical model and is able to explain

generative mechanism of observed distribution. The distribution of latent success

probability p and number of trial m are estimated by MCMC estimation and differ-
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ences in distributions of p and m among different social categories are analyzed by

hierarchical models.

The new analytical framework is based on an intermediate modeling strategy. In

general, formal modeling of a social phenomenon has three features:

(1) a more realistic mechanism description of the phenomenon;

(2) more constraints on parameters; and

(3) lower fitness of empirical data.

On the contrary, conventional statistical modeling, which tries to summarize empirical

data structures as typically linear equations, has opposite features:

(1) less or no realistic mechanism description of the phenomenon;

(2) less or no constraints on parameters; and

(3) higher fitness of empirical data.

The intermediate modeling strategy, composed of simple mathematical modeling and

Bayesian statistical modeling, aims to have not the highest but the most reasonable

qualities of all features:

(1) a reasonable realistic mechanism description of the phenomenon;

(2) reasonable constraints on parameters; and

(3) reasonable fitness of empirical data.

A series of Japanese cross-sectional survey (SSM survey) data from 1955 to 2015,

collected every 10 years, will be analyzed using the Bayesian model. The results of

this analysis will be interpreted and discussed. Section 2 will discuss preceding studies

on class identification; section 3 will introduce the life-is-like-a-random-walk model;

section 4 will provide a methodological description of Bayesian modeling; section 5

will offer results of analyses of SSM survey data; and finally, section 5 will provide a

conclusion.

2 Class Identification

Class identification (or self-location in the class system or status identification) is a

kind of subjective evaluation of one’s own social status in society. More specifically,

class identification is the extent to which people identifies themselves as members of
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a certain social class or stratum.

In a series of studies across many countries, a tendency, referred to as the “middle

concentration tendency,” in which the majority of people tend to regard themselves

as middle regardless of their actual objective status, was common. For example,

Kelley and Evans (1995) and Evans and Kelley (2004) found, using cross-national

survey datasets, that in many countries people tend to select the middle category

for subjective status location. These researchers argued that this tendency existed

because of a comparison mechanism in homogeneous reference groups, that is, an

assumption that people tend to assess their social status by comparing themselves with

others whose status are similar with them. Even in Japan, the middle concentration

tendency has consistently been observed since the 1970s when Japan enjoyed affluent

economics as a result of the postwar economic growth (Kikkawa, 2016).

The formal model by Fararo and Kosaka (2003) further pursued the idea of a mech-

anism of class identification formation via comparison with others. In their model, it

is assumed that actors evaluate their class position by a sequential comparison process

with others in order of importance of several social economic dimensions. Under the

model assumption, the distribution of class identification approximates to a normal

distribution under the condition that all dimensions are independent of each other

(Ishida, 2012; Hamada, 2012).

Following these preceding studies, in this paper, I introduce an alternative and

simpler mathematical model explaining the middle concentration tendency.

3 Life-Is-like-a-Random-Walk Model

An ancient Chinese saying states “good luck and bad luck alternate like the strands

of a rope.” This saying tells us that good events and bad events in life are like two

sides of a coin flipped by Fate. Many other sayings share the same message relevant

to fortune and life, such as “everything for men is like a Saioh’s horse.” In line with

these wisdoms, I insist here “life is like a random walk.”

The random walk, as well known, is a simple stochastic process in which actors

flip a coin to decide to move left with a probability p or right with 1 − p in every

step in m times sequential steps. As long as the flipping-a-coin trials are independent

from one another, distribution at a sufficiently large m-th step approximates a normal

distribution. Figure 1 is an example of the random walk process in which the left
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graph shows trajectories of 100 different random walks with the probability 0.5 and

the right graph shows the histogram of their positions at 500th step.
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Fig. 1 An example of the random walk process (p = 0.5,m = 500)

Based on the random walk process, I construct the life-is-like-a-random-walk model

(LLRW model) for class identification distribution. Here are two assumptions:

Assumption 1 Life is like a series of Bernoulli trials that result in success with a

probability p or failure with 1− p.

Assumption 2 People evaluate their relative status in society by the identical function

of their success rate (z) of Bernoulli trials at the end of m-th trial.

Based on the assumptions, number of success denoted by s through m trials comes

from the binomial distribution parameterized by m and p, that is,

s ∼ Binomial(m, p). (1)

And then, according to the central limit theorem, the distribution of success rate

(z = s/m) will approximate a normal distribution parameterized by p as mean and√
p(1− p)/m as standard deviation, as m gets sufficiently larger, that is,

z ≈ Normal(p,
√
p(1− p)/m). (2)

Figure 2 shows a simple outline illustration of the life-is-like-a-random-walk model.

From the model, a simple explanation for the middle concentration tendency of

class identification is derived: if the lives of most people are like a series of fifty-fifty

games and they evaluate their status based on their wins, then distribution of class
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Life-is-like-a-random-walk model
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Fig. 2 Outline of the life-is-like-a-random-walk model

identity eventually shows middle concentration. In addition, two implications with

respect to parameters can be derived immediately from the model.

Implication 1 The higher success probability (p) in society, the higher the social av-

erage subjective status.

Implication 2 The larger the number of trials (m) in society, the smaller the variance

of subjective status.

It isnoteworthy that the LLRW model has the same mathematical structure as the

specific version of Fararo-Kosaka model of class identification with the assumption of

two ranks and identical distributions (Fararo and Kosaka, 2003). Hence, it can be

said that the LLRW model and the Fararo-Kosaka model have different allegorical

mechanisms, but share the same fundamental mechanism.

4 Parameter Estimation by the Bayesian Statistical Model

I will apply the Bayesian statistical modeling approach for parameter estimation of

the life-is-like-a-random-walk model where there are two parameters to be estimated:

latent success probability p and latent number of trials m.

In contrast to the conventional frequentists approach, the Bayesian modeling ap-

proach enables us to construct a flexible model by means of a hierarchical model and

to express the generative process of observed distribution. These features help us
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conduct direct estimations of the mathematical model and interpret an outcome of

quantitative analysis based on the concrete theoretical framework.

4.1 Data and Variables

Data to be analyzed comes from the National Survey of Social Stratification and So-

cial Mobility (SSM) surveys, which are national level random sampling cross-sectional

surveys conducted every 10 years from 1955 to 2015. Accordingly, we have 7 waves

of data*1. SSM surveys focus mainly on the current situation and changes in so-

cial stratification structure as well as inter- and intra-generational class mobility in

Japan. Moreover, SSM surveys also focus on social psychological aspects of social

stratification, such as people’s cognition and attitude towards stratification, inequal-

ity, unfairness, and related policies. By using this longitudinal data, I examine changes

on latent mechanisms of generating class identification distribution in postwar Japan.

It should be noted that since female samples are only available from the 1985 survey,

in this study, I decide to analyze only male samples aged 20 to 69 for examination of

longitudinal trends of class identification*2.

The outcome variable is relative class identification score z ranging from 1 as the

highest to 0 as the lowest. The variable is recoded from 5-scaled class identification.

In the SSM survey, class identification has almost invariably been asked using the

following question*3: “suppose we were to divide the people living in Japanese society

today into the following five strata (Upper, Upper Middle, Lower Middle, Upper

Lower, Lower Lower), to which group do you think you would belong?” I assign

4/4 = 1 to “Upper,” 3/4 to “Upper Middle,” 2/4 to “Lower Middle,” 1/4 to “Upper

Lower,” 0/4 = 0 to “Lower Lower,” respectively*4.

*1 The published data and detailed information on surveys from 1955 to 2005 can be found
in the SSJ Data Archive (http://csrda.iss.u-tokyo.ac.jp). The short summary of
2015 survey can be found in the following URL (http://www.l.u-tokyo.ac.jp/2015SSM-PJ/
2015ssmjisshigaiyo.pdf) [in Japanese].

*2 Analyses of female samples are tasks to be completed in the future.
*3 SSM surveys have been simultaneously conducted by two modes of administration: interviewer-

administered and self-administered. The question of class identification has been investigated
by interviewer-administered questionnaire in every wave except in 2005.

*4 As for the 2005 data, I employ a 10-scaled class identification variable (from 1 as the highest
to 10 as the lowest) investigated by interviewer-administered questionnaire instead of 5-scaled
variable to avoid bias by mode of administration. According to suggestions by Kobayashi
(2008), I recoded the 10-scaled variable to the 5-scaled variable in the following manner: 1 and
2 to “Upper,” 3 and 4 to “Upper Middle,” 5 and 6 to “Lower Middle,” 7 and 8 to “Upper
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I try to examine how a difference in social category results in a difference in class

identification in the different games model, which I will describe in detail in the next

section. In this study, I focus on age cohorts and educational levels as factors that

would differentiate social economic opportunities among people in Japan (Kikkawa,

2016). I categorize five age groups according to respondents’ age in each wave: 20–

29, 30–39, 40–49, 50–59, and 60–69. Then, 11 age cohorts are obtained from age

groups in each wave according to year of birth: 1886–1895, 1896–1905, 1906–1915,

1916–1925, 1926–1935, 1946–1955, 1956–1965, 1966–1975, 1976–1985, and 1986–1995.

Three educational levels are categorized by years of schooling: lower-secondary (under

9 years), upper-secondary (11–13 years) and tertiary (over 14 years).

4.2 Comparison of Two Models

In the following analysis, I test two models, the common game model and the different

games model. The common game model assumes that every player of the game has

the same opportunities in terms of success probability p and number of trials m;

thus, the dispersion of success rate and identified class is a matter of probabilistic

luck. On the other hand, the different games model assumes that players in different

categories play different games with different opportunities determined by pj and mj ;

therefore, the dispersion of success rate depends on different opportunities as well as

probabilistic luck.

Figure 3 shows a simple outline illustration of the two models.

The preference of the models in terms of model prediction of new data will be eval-

uated by the WAIC (the Watanabe-Akaike or widely applicable information criterion)

in every wave (Watanabe, 2010; Vehtari and Gelman, 2014).

5 Results of Analyses

5.1 Common Game Model

First, I examine the common game model using 2015 data with the assumption that

all members in society have experienced the same kind of trials with common p and

Lower,” 9 and 10 to “Lower Lower,” and then assigned relative class identification scores in
the same way as the other waves.
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Comparison of two models 

15

p, m

Common game model

Same opportunity, it’s a matter of luck

p1, m1

p2, m2

p1, 1

p3, m3

p2, m2

Different games model

Different opportunities and luck

Model comparison by WAIC

Fig. 3 Outline of the two models

m. From the life-is-like-a-random-walk model, it is assumed that observed relative

status zi is approximately normally distributed with parameters p and m.

zi ∼ Normal(p,
√
p(1− p)/m) (3)

Here, p is assumed to be a logistic function of beta for future model extension.

p =
1

1 + exp(−β)
(4)

It is assumed that prior distribution of β is a normal distribution with a relatively

larger standard deviation, that is,

β ∼ Normal(0, 102). (5)

It is also assumed that m is a continuous variable for simplification of estimation and

prior distribution of m is a a truncated normal distribution, such that

m ∼ Normal+(0, 10
2). (6)

Figure 4 is the graphical model of the common game model, where grey circle nodes

indicate observed continuous variables (zi in this model), double circle nodes indicate

generative continuous variables (parameter p), and single circle nodes indicate latent
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continuous variables with prior distribution (parameters β and m). Figure 5 is the

outline illustration of the model.

zi

m

pβ

i

Fig. 4 Graphical model of the common game model

𝑁𝑁𝑁𝑁(0, 102)

Common game model outline (modified)

𝒛𝒛𝒛𝒛𝑖𝑖𝑖𝑖 ~iid

𝑁𝑁𝑁𝑁( 𝒑𝒑𝒑𝒑, 𝒑𝒑𝒑𝒑(1 − 𝒑𝒑𝒑𝒑)/𝒎𝒎𝒎𝒎)

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛽𝛽𝛽𝛽)
~

17

𝑁𝑁𝑁𝑁+(0, 102)

Fig. 5 Outline of the common game model

Posterior distributions for the parameters were estimated by the Markov Chain

Monte Carlo (MCMC) method. In this study, I employed Stan 2.16.0 and RStan 2.16.2

(Stan Development Team, 2017a,b) for the MCMC programming*5. I conducted four

chains of sampling for 5,000 iterations each, which includes 1,000 initial iterations as

burn-in samples. The thin interval was set as one, to generate 16,000 sampled points

of posterior distributions. The sample size (n) used for this analysis was 2895.

Table 1 shows the summary of the MCMC estimation of posterior distributions for

the common game model for SSM 2015 data. The Gelman-Rubin MCMC convergence

statistic (R̂) of each parameter is around 1.000; hence, we can safely conclude that

the MCMC sampling converged (Gelman et al., 2013, 284–286).

*5 I referred Kruschke (2015) and Matsuura (2016) for building Stan codes for the models. Stan
codes are available in Appendix 2.
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Table 1 Result of the MCMC estimation of the common game model in
2015 data (n = 2895)

mean SE SD 2.50% 25% 50% 75% 97.50% R̂

β 0.033 0.000 0.016 0.001 0.023 0.034 0.044 0.065 1.000
p 0.508 0.000 0.004 0.500 0.506 0.508 0.511 0.516 1.000
m 5.417 0.001 0.141 5.146 5.319 5.416 5.510 5.694 1.000

SE: standard error of posterior mean, SD: standard deviance of posterior distribution,

x%: x-percentile of posterior distribution, R̂: Gelman-Rubin MCMC convergence statistic.

The success probability of a trial p is estimated around 0.51, meaning that the

game is almost a fifty-fifty game. The number of trials m is estimated to be five

times, approximately. Therefore, if everyone played a fifty-fifty game approximately

five times, then we obtain nearly the same distribution as observed relative status

distribution. Figure 6 shows the histogram of observed relative status overlapped by

predicted normal distribution determined by the medians of posterior distributions of

p and m.
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Fig. 6 Histogram of observed relative status and predicted distribution in 2015 data

5.2 Different Games Model on Age Cohorts

Next, I examine the different games model with the assumption that each category

in the society has experienced different games with different opportunities. I apply

the framework of the Bayesian hierarchical modeling to construct the different games

model.
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First, I examine the different games model on age cohorts in 2015 data. In this

model, it is assumed that the parameters p and m differ by age cohort. A person i’s

relative status zi is assumed to be normally distributed, and the distribution to be

parameterized by pj(i) and mj(i), which indicates success probability and number of

trials commonly held in the cohort j to which person i belongs, that is,

zi ∼ Normal(pj(i),
√

pj(i)(1− pj(i))/mj(i)). (7)

pj is assumed to be a logistic function of a liner equation composed of β0 as the

intercept and βj as the slope of each category. βj is assumed to be under the zero-sum

constraint and has common normal distribution around zero with σβ as the standard

deviation. β0 and σβ as hyper-parameters have a normal distribution and a uniform

distribution from 0 to ∞ as prior distributions, respectively. These assumptions can

be described in the following notations,

pj =
1

1 + exp(−β0 − βj)
, (8)

β0 ∼ Normal(0, 102), (9)

βj ∼ Normal(0, σβ),
∑

βj = 0, (10)

σβ ∼ Uniform(0,∞). (11)

mj is assumed to have a common truncated normal distribution at zero with hyper-

parameters µm and σm, that is,

mj ∼ Normal+(µm, σm), (12)

µm ∼ Uniform(0,∞), (13)

σm ∼ Uniform(0,∞). (14)

Figures 7 and 8 are the graphical model and the outline illustration of the different

games model, respectively. The different games model can be regarded as a Bayesian

version of analysis of variance (ANOVA) model (Kruschke, 2015, Ch.19).

I would like to discuss the interpretation of difference of parameters. What are

the actual meanings of parameters p and m? How can we interpret the outcome of

empirical data analysis? p can be regarded as a subjective evaluated advantage in
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Fig. 7 Graphical model of the different games model

𝑁𝑁𝑁𝑁(0, 102)

Different game model outline

𝒛𝒛𝒛𝒛𝑖𝑖𝑖𝑖 ~iid

𝑁𝑁𝑁𝑁( 𝒑𝒑𝒑𝒑𝑗𝑗𝑗𝑗(𝑖𝑖𝑖𝑖), 𝒑𝒑𝒑𝒑𝑗𝑗𝑗𝑗 𝑖𝑖𝑖𝑖 (1 − 𝒑𝒑𝒑𝒑𝑗𝑗𝑗𝑗 𝑖𝑖𝑖𝑖 )/𝒎𝒎𝒎𝒎𝑗𝑗𝑗𝑗(𝑖𝑖𝑖𝑖))
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~ 𝑁𝑁𝑁𝑁+(𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚,𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚)

𝑈𝑈𝑈𝑈 (0,∞)𝑈𝑈𝑈𝑈 (0,∞)

Fig. 8 Outline of the different games model

a life event, such as enrollment in a university or getting a job or promotion shared

in a social category. So, a category that has a higher value of p can be assumed to

be a category that achieves higher advantage. Meanwhile, m can be regarded as a

subjective evaluated number of important life events that members of a social category

have experienced. If you played a few games, you could all win from beginner’s luck or

could all lose. But, if you played many games, a winning rate becomes more reflective

of their actual advantages, so that, the variance within a category becomes smaller.
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However, the value of m should be regarded not as an absolute but rather as a relative

value, because it partly depends on measuring scales.

Let us examine the result of the analysis. Table 2 shows the summary of the MCMC

estimation of posterior distributions for the different games model on age cohorts in

SSM 2015 data. The MCMC setting for parameter estimation is the same as that

in the common game model. MCMC sampling for all parameters can be judged as

being converged from the values of R̂. The index of βj , pj , and mj indicates age

cohorts: 1 1986-95 (20s in 2015), 2 1976-85 (30s), 3 1966-1975 (40s), 1956-1965 (50s),

and 1946-1955 (60s).

Table 2 Result of the MCMC estimation of the different games model on age
cohorts in 2015 data (n = 2895)

mean se mean sd 2.50% 25% 50% 75% 97.50% R̂

β0 0.028 0.000 0.017 −0.005 0.017 0.028 0.040 0.062 1.001
β1 −0.030 0.000 0.038 −0.106 −0.055 −0.030 −0.004 0.039 1.003
β2 −0.099 0.000 0.033 −0.164 −0.120 −0.099 −0.076 −0.033 1.000
β3 0.029 0.000 0.030 −0.029 0.009 0.029 0.049 0.089 1.000
β4 0.096 0.000 0.032 0.032 0.074 0.096 0.118 0.159 1.000
β5 0.004 0.000 0.027 −0.046 −0.015 0.004 0.022 0.056 1.003
σβ 0.121 0.002 0.084 0.038 0.071 0.099 0.143 0.339 1.003
µm 5.427 0.006 0.317 4.784 5.288 5.438 5.574 6.028 1.001
σm 0.433 0.019 0.454 0.024 0.162 0.317 0.552 1.543 1.005
p1 0.500 0.000 0.011 0.477 0.492 0.500 0.507 0.521 1.003
p2 0.482 0.000 0.009 0.464 0.476 0.483 0.489 0.501 1.000
p3 0.514 0.000 0.008 0.498 0.509 0.514 0.520 0.531 1.000
p4 0.531 0.000 0.009 0.513 0.525 0.531 0.537 0.548 1.001
p5 0.508 0.000 0.007 0.495 0.503 0.508 0.513 0.522 1.001
m1 5.143 0.016 0.349 4.369 4.921 5.187 5.403 5.696 1.007
m2 5.456 0.003 0.250 4.964 5.293 5.457 5.606 5.968 1.001
m3 5.611 0.004 0.263 5.155 5.432 5.583 5.769 6.194 1.001
m4 5.579 0.003 0.262 5.115 5.402 5.557 5.736 6.158 1.000
m5 5.379 0.004 0.213 4.947 5.241 5.383 5.524 5.789 1.004

The index of βj , pj ,mj indicates age cohorts: 1 1986-95, 2 1976-85, 3 1966-1975, 4 1956-1965, 5 1946-
1955.

Figures 9 and 10 show the difference of parameters pj and mj depending on age

cohorts where each dot indicates the median and the error bar indicates 95% high

density interval of posterior distribution, respectively. Figure 11 is the path plot of

the medians of pj and mj by age cohorts. Roughly saying, opportunities of games in
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terms of both the success probability and number of trials increases with age up to

respondents in their 50s, except those in their 30s, who, in terms of success probability,

suffered the negative effects of severe recession when entering graduate job markets.

Figure 12 shows the histograms of observed relative status overlapped by predicted

normal distributions according to age cohorts.

5.3 Different Games Model on Educational Levels

Next, I examine the different games model on educational levels. Table 3 shows the

summary of the MCMC estimation of posterior distributions for the different games

model on educational levels in SSM 2015 data. The MCMC setting for parameter

estimation is the same as that in the common game model. MCMC sampling for all

parameters can be judged as being converged from the values of R̂. The index of βj ,

pj , and mj indicates educational levels: 1 lower secondary, 2 upper secondary, and 3

tertiary.

Table 3 Result of the MCMC estimation of the different games model on edu-
cational levels in 2015 data (n = 2895)

mean se mean sd 2.50% 25% 50% 75% 97.50% R̂

β0 −0.048 0.000 0.023 −0.093 −0.063 −0.048 −0.032 −0.002 1.000
β1 −0.280 0.000 0.042 −0.364 −0.307 −0.280 −0.252 −0.196 1.000
β2 −0.054 0.000 0.026 −0.105 −0.071 −0.054 −0.037 −0.001 1.000
β3 0.334 0.000 0.027 0.282 0.316 0.334 0.351 0.385 1.000
σβ 1.345 0.104 3.525 0.192 0.370 0.609 1.146 6.853 1.003
µm 6.449 0.396 11.553 2.175 4.983 5.559 6.159 13.160 1.007
σm 4.329 0.690 23.783 0.313 0.848 1.509 3.076 20.581 1.006
p1 0.419 0.000 0.015 0.389 0.409 0.419 0.429 0.449 1.000
p2 0.475 0.000 0.005 0.464 0.471 0.475 0.478 0.485 1.000
p3 0.571 0.000 0.006 0.560 0.567 0.571 0.575 0.582 1.000
m1 4.687 0.006 0.451 3.833 4.377 4.673 4.988 5.611 1.001
m2 5.562 0.002 0.200 5.184 5.427 5.557 5.694 5.960 1.000
m3 6.179 0.003 0.260 5.685 6.002 6.172 6.352 6.700 1.000

The index of βj , pj ,mj indicates educational levels: 1 lower secondary, 2 upper secondary, and 3 tertiary.

Figures 13 and 14 show the difference of parameters pj and mj depending on

educational levels where each dot indicates the median and the error bar indicates

95% high density interval of posterior distribution, respectively. Figure 15 is the path
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plot of medians of pj and mj by educational levels. We can see from these figures that

both the success probability pj and number of trials mj increase as educational level

gets higher, indicating that higher educational levels provide better opportunities in

terms of both success probability and number of trials in a random walk game. Figure

16 shows the histograms of observed relative status overlapped by predicted normal

distributions according to educational levels.

5.4 Trends of the Parameters of the Common Game Model and the Differ-

ent Games Model on Educational Levels

Finally, I examine the trends of the model parameters in both the common game

model and the different games model on educational levels in postwar Japan from

1955 to 2015*6. The trends of the parameters of the different games model on age

cohorts will be shown in Appendix 1.

Figures 17 and 18 are the trends of parameters of the common game model, and

Figure 19 is the path plot of medians of p and m by survey years. As for success

probability p, it increased sharply from 0.33 in 1955 to around 0.5 in 1975 following

the high economic growth in Japan, and then it became almost stable around 0.5

from 1975 to 2015, except for a slight decrease in 2005. As for number of trials m, it

increased from 4.7 in 1955 to 6.5 in 1975 in the same way with success probability,

then it decreased by about 1 point in 1985, thereafter it became almost stable. We

can see clearly from the path plot (Figure 19) that the postwar period can be divided

into two periods in terms of people’s subjective evaluation: the period of expanding

opportunity in terms of both the success probability and possible chance of trials

from 1955 to 1975 and the period of high and constant opportunity, but less chance

of trials from 1985.

Figures 20 and 21 are the trends of parameters of the different game model on

educational levels, and Figure 22 is the path plot of the medians of pj and mj by

educational levels by survey years. Both success probability pj and number of trialsmj

increase as educational level increases in every survey period. As for pj , the difference

of success probabilities among educational levels became smaller from 1955 to 1975,

*6 The sample size of the data in each survey wave was 1982 in 1955 survey, 1989 in 1965, 2665
in 1975, 2391 in 1985, 2372 in 1995, 2567 in 2005, and 2895 in 2015.
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and then become larger after 1975. The shapes of trajectories for each educational

level in the path plot looks mostly homogeneous, but the location moves to the right-

top corner as educational level increases, indicating that higher educational levels

provide better opportunities in terms of both the success probability and number of

trials in a random walk game in every survey period.

Figure 23 shows the values of WAIC for model comparison*7. In terms of WAIC, the

different games model is adopted as a better model than the common game model in

every survey period. Figure 24 shows differences of WAIC between the two models*8.

*7 I employed ‘loo’ R package (Vehtari et al., 2016) for calculation of WAIC.
*8 More precisely, Figure 24 shows differences of estimated expected log pointwise predictive

density for a new data (eldp), which is related to WAIC as WAIC = −2elpd. See Vehtari and
Gelman (2014) for more information.
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We can see from Figure 24 that with respect to educational level, the common game

model and the different games model were closest in 1975 and 1985. In those days, it

was commonly discussed in mass media as well as academia that Japan had become

an “all middle-class society” in which almost of all the people regarded themselves as

“middle.” From the outcome of our analysis, it can be claimed that in the time of

the “all middle-class society,” people evaluated their society almost the same as the

common game in which all players have the same opportunities, but different luck.

6 Conclusion

Thus far, I have introduced a new analytical model for class identification by ap-

plying a mixed method of simple mathematical modeling and Bayesian statistical

modeling. In the first part, I introduced the life-is-like-a-random-walk model for class

identification distribution, which may be the simplest model for explaining middle

concentration. In the second part, I attempted a parameter estimation of latent suc-

cess probability and number of trials by the Bayesian (hierarchical) modeling method.

From the analysis, I determined that:

(1) assuming approximately five trials of fifty-fifty games with around 0.5 suc-

cess probability can well describe the observed class identification distribu-

tion in 2015 data;

(2) the Japanese postwar period can be divided into two periods in terms of

people’s subjective evaluation: the period of expanding opportunity from

1955 to 1975 and the period of high and constant success probability, but

less chance of trials after 1985; and

(3) the different games model assuming differences in parameters among edu-

cational levels is always better in terms of goodness of prediction than the

common game model assuming common parameters in the society in every

survey period. However, these models were closest in terms of goodness

of prediction in 1975 and 1985, possibly indicating that in the time of “all

middle-class society,” people evaluated their society almost the same as the

common game in which all player has the same opportunities, but different

luck.

Thus, although some future tasks, which includes constructing and testing more
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empirically realistic and complex models, remain, at least in this study, we could

shed new light on the well-known Japanese class identification trends using a new

analytical framework.
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7 Appendix 1: The Trends of the Parameters of the Different

Games Model on Age Cohorts

This appendix shows the trends of the model parameters in the different games model

on age cohorts in the postwar Japan from 1955 to 2015, and the results of model

comparison between the common game model and the different games model in each

survey wave by WAIC.
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