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Abstract 
 The purpose of this study is to demonstrate the usefulness of the Bernoulli core 
approach and its affinity to the Bayesian statistical analysis. The Bernoulli core approach is 
a mathematically organized system of probabilistic models that consists of self -contained 
sub-models (Hamada 2017). Each sub-model is expressed as a probabilistic model and 
explains the process of genesis of distribution for specific outcome variables. We test the 
empirical validity of one of the sub-models, the generative model for income distribution 
(Hamada 2004; 2016). Our toy model, which is different from the black-box generalized 
linear model, formally represents a sociological theory and can explain the generative 
process of social action in terms of a rigorous micro-macro linkage. Our theory can be tested 
empirically by the Bayesian statistical analysis, since it is expressed as a stochastic model. 
To demonstrate the linkage between the toy model and statistical analysis, we estimate 
posterior distributions of the parameters of the probabilistic toy model by Markov chain 
Monte Carlo estimation. Using nationwide survey data in Japan, SSM2015, we compare a 
non-theoretical model with a theoretical one that includes a hierarchical model, by the 
widely appreciable information criteria and the leave-one-out cross validation. We find that 
predictive accuracy of the theory-based hierarchical model is fine and provides interesting 
information about latent parameters.   
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1. Introduction 
 

1.1. The genesis of income distribution 
In the field of social science, lognormal distribution 1 has often been used for the 

mathematical description of income distribution.  McAlister (1879) was the first to 

present a possible model of genesis of the lognormal distribution. Kapteyn (1903) 

established more clearly the genesis of the distribution and was the first to apply the 

                                                 
* This research is supported by JSPS Grant-in-Aid for Specially Promoted Research (Grant number 
25000001 and 16K13406), and I thank the 2015 SSM Survey Management Committee for allowing 
me to use the SSM data. 
1 The lognormal distribution is intuitively defined as the distribution of a random variable whose 
logarithm is normally distributed (Aitchison & Brown 1957; Crow & Shimizu 1988). 
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lognormal distribution to income distribution. Gibrat (1931) illustrated the law of 

proportionate effect with extensive income data from many countries and for a longer 

time period2. In Gibrat’s model, the random chance factor plays an important role. If 

the random shock is applied to a proportional rather than absolute income change, the 

process converges to a lognormal distribution (Gibrat 1931; Mincer 1970). 

Champernowne (1953) elaborated Gibrat’s model and showed that when certain 

assumptions about random shock are introduced, the income distribution converges to 

a Pareto distribution, which is used for approximation of the upper tail of income 

distribution. Aitchison and Brown (1957) showed the condition of lognormality for a 

society that consists of infinite subgroups; namely, if variances in the component 

distribution are of the same size and the means of the components are lognormally 

distributed, the aggregate distribution remains lognormal. Even though the 

assumptions are not realistic, their model provided a theoretical framework for the 

decomposition of income distribution of the entire society into subpopulations 

(Hamada 2005). Rutherford (1955) applied random shock to age cohorts and showed 

that the income variance increases with age for each cohort, but that aggregate variance 

does not change much with a relatively stable age distribution (Rutherford 1955; 

Mincer 1970).  

 

1.2. The Bernoulli core approach 
These previous studies suggest that explaining the genesis of income distribution 

itself can be an interesting and important research topic3. In the field of mathematical 

sociology, Hamada (2003, 2004) formalized a repeated investment game to explain the 

genesis of income distribution 4. The generative model of income distribution is a 

sub-model of the general systematic theory, which is called the Bernoulli core approach. 

                                                 
2 Strictly speaking, the lognormal distribution approximates incomes in the middle range, but fails 
in the upper tail, where the Pareto distribution is more appropriate (Crow & Shimizu 1988). For 
simplicity, we use only the lognormal distribution as an ideal type of income distribution.  
3 Friedman (1953) pointed out that the absence of a satisfactory theory of the personal distribution 
of income and of a theoretical bridge connecting the functional distribution of income with the 
personal distribution is a major gap in the modern economic theory.  
4  The generative model of income distribution was first proposed by Hamada (2003; 2004). 
Although the model successfully proved the lognormality of distribution of profit in the repeated 
game, assumptions are slightly complicated and the difference between the concepts of income 
(flow) and capital (stock) is not sufficiently clear. Therefore, Hamada (2016) attempted to simplify 
the model without loss of generality and extract more useful implications . In this study, we add an 
analysis of the model by the Bayesian statistical method to support the empirical validity of the 
model. 
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The Bernoulli core approach is an implementation of the general theoretical sociology, 

which is proposed by Fararo (1989). The Bernoulli core approach is a theory described 

by a system of random variables, in which each random variable represents specific 

distribution of resources such as income, education, or well-being. Traditionally, 

mathematical sociology has been used to build original models for explaining various 

social phenomena such as group process, individual action, resource distribution, and 

social institution. The Bernoulli core approach preserves the systematic relation of 

middle-range models in mathematical sociology, since each logical relation can be 

expressed as a transformation of random variables. 

 

 

Figure 1: Illustration of the Bernoulli core approach 
  

Figure 1 illustrates the systematic relation of random variables that correspond to 

various sociological models. The core of this systematic model is Bernoulli distribution  

since it is one of the simplest probability distributions. In this study, we focus on the 

model of genesis of distribution; however, the model is just a sub-model of a more 

general and systematic framework. Similar to Lego blocks or piano variations, we can 

build different models from combinations of transformation of random variables. For 

example, the model of middle-class identification, also known as the Fararo-Kosaka 

model of class identification (Kosaka & Fararo 2003), can be expressed as a combination 

of Bernoulli, binomial, and normal distribution. Ishida (2018) proposed a new model for 

class identification based on the random walk process (LLRW model). The LLRW model 

and the Farao-Kosaka model have the same mathematical structure, binomial distribution. 

Therefore these models also can be viewed as sub-models of the Bernoulli core approach 

since the random walk process is fully described by Bernoulli and binomial distribution. 

A model of class differentials on educational attainment, known as the relative risk 



―124―

aversion hypothesis can be viewed as the stochastic model whose outcome is Bernoulli 

distribution, in other words, to stay around or to leave advanced level of education  

(Breen & Goldthorpe 1997). Additionally, the generative model of income distribution 

can be expressed as a combination of Bernoulli, binomial, normal, and lognormal 

distribution as we will show in next section.  

Thus, the Bernoulli core approach provides general, systematic, clear, and 

rigorous framework for sociological theory. Our model is different from previous 

studies in Economics in terms of orientation for general theory. Each sub-model of the 

Bernoulli core approach attempts to integrate interpretative sociology and analytical 

action theory (Fararo 1989).  

 

1.3. Organization of this paper 
We will organize this paper as follows. In Section 1, we propose the Bernoulli 

core approach as a general sociological theory framework. In Section 2, we briefly 

summarize the generative income distribution model proposed by Hamada (2016). The 

model focuses on the accumulation process of human capital by random chances and 

describes income as a gain from the capital. The main results of theoretical analysis 

suggest that capital and income distribution are asymptotically subject to a lognormal 

distribution. In Section 3, we construct a Bayesian model in order to test our toy model 

empirically using SSM2015 data. In Section 4, we estimate posterior distributions of 

parameters by Markov chain Monte Carlo (MCMC) method and compare the models by 

the widely applicable information criterion (WAIC) and the leave-one-out 

cross-validation (LOO). In terms of those criteria, we find that our toy model may have 

better predictive accuracy compared to models that are not based on the theory for 

genesis of income distribution. 

 
2. Mathematical model of genesis of income distribution 
 

2.1. Basic assumptions of the model 
The assumptions of our simplified model are as follows (Hamada 2016). Hereafter, we 

use the symbols Y and W for capital and the number of success outcome, respectively, 

to emphasize that they are random variables.  

1. People in a society experience random chance n times with success and failure 
probabilities of p and p1 , respectively, where )1,0(p . The probability p is 
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common to all members in a society and fixed through time5.  

2. Ry0  and )1,0(b  denote “an initial capital” and “an interest rate,” 
respectively. b is a constant. tY  indicates the amount of capital at time t. 

3. At each chance, people invest a constant proportion b of capital tY . In other words, 

the investment cost is bYt  at time t. 

4. On one hand, people earn a profit of bYt 1  when they succeed at time t. If they 

succeed, then the capital at time t is defined as bYYY ttt 11   . On the other hand, 

people lose bYt 1  when they fail at time t. If they fail, then the capital at time t is 

defined as bYYY ttt 11   .  

 

Figure 2 illustrates the process of capital accumulation under the assumptions. Each 

bifurcation indicates success or failure by random chances. As the diagram suggests, the 
capital tY  may differ among people in a society depending on the result of random 

chances. Inequality of capital will emerge as the random chance is repeated.  

 

 
Figure 2: Tree diagram of the model.  

 

The random chance p represents uncertainty of the return from an investment of 

capital. Interest rate b indicates the magnitude of profit from capital. As b increases, the 

                                                 
5  This strong assumption can be generalized (Hamada 2016). Even though we assume the 
probability p differs among individuals in a society, the main implication of the model does not 
change. Hamada (2016) showed the capital and gained interest follow lognormal d istribution even 
when success probability p has a probability distribution. This generalization is obtained by the 
application of Lyapunov’s central limit theorem. 
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expected increment of capital increases. In our model, we define capital as an 

accumulated individual resource, such as human capital (i.e., knowledge or skills). We 

assume that human capital is the main resource of individual income or equivalently, 

individual labor supply (Hamada 2016). 

Figure 3 shows the cumulative process of human capital graphically. Each line 

graph represents individual history of repeated investment. The line graph corresponds 

to the trajectory of a random walk with cumulative effect6. As the number of Bernoulli 

trials (time steps) increases, the variance of capital increases. On the one hand, the gap 

between individuals in the low range diminishes, and, on the other hand, the gap in the 

high range expands as the time steps increase. 

 

 

Figure 3: Illustration of the capital accumulation process. The horizontal and 

vertical axes indicate the number of Bernoulli trials and the amount of capital, 

respectively. 
 

2.2. Basic properties and propositions of the model 
One of the main results of our theoretical analysis is that the capital Y follows a 

lognormal distribution. The model specifies the probability density function of the 

capital distribution as a function of exogenous parameters of our model , namely, 

probability p, investment rate b, and time steps n. Additionally, by the virtues of the 

mathematical toy model, the average and inequality of capital distribution can be 

                                                 
6 In terms of the Bernoulli core approach, our model can be viewed as an extended version of the 
LLRW model (Ishida 2018), since both model contain the random walk process, sum of Bernoulli 
random variables, and have Bayesian model expression.   
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expressed as functions of exogenous parameters. Our parsimonious model endogenously 

derives the average income and Gini coefficient of the distributions from exogenous 

parameters. Namely, the change of average income and inequality can be analyzed 

systematically by basic parameters p and b (Hamada 2016).    
After n times random chance, capital nY  can be written as 0 (1 ) (1 )W n W

nY y b b    , 

where W and n W  are the numbers of success and failure outcomes, respectively, in 

repeated games (Hamada 2016). 

 

Proposition 1 (lognormal distribution of capital and income). If n is sufficiently large, 

the distribution of capital Yn follows approximately a lognormal distribution. Namely, 
2~ ( , (1 ) )nY B Anp np p A    where  

))1/()1log(( bbA   and )1log(log 0 bnyB  . 
Moreover, the gained interest nbY  follows a lognormal distribution by the nature of 

probability density function of lognormal distribution. The probability distribution of 
income nbY  is  

2~ (log , (1 ) )nbY b B Anp np p A    . 

The probability density function of a capital distribution that is derived from a repeated 

random chance is  
2

22

2
2

0

1 1 (log )exp where
22

1 1log log(1 ) log , (1 ) log .
1 1

y
y

b by n b np np p
b b




 

 
 
 

                   

 

Proof. See Hamada (2016).  □ 

 

Proposition 1 shows that stock (capital) and flow (interest of capital , income) 

are lognormally distributed, respectively, and this implication plays an important role in 

Bayesian modeling. Figure 4 indicates the relation of random variables that correspond 

to the derivation of lognormal distribution.  
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Figure 4: Transition process of lognormal distribution (capital distribution).  

 

So far, the parameters of income distribution have been identified. Before we estimate 

the posterior distribution of parameters, we need to confirm the property of average 

capital. Differentiating the mean of capital distribution with respect to p, we obtain the 

following proposition.   

 

Proposition 2 (distribution mean and success probability (Hamada 2016)). If interest 
rate b is smaller than 761594.0)1e/()1e( 22  , then the mean of the capital distribution 

is an increasing function of the success probability p of random chance. 

Proof. See Hamada (2016). □ 

 

In general, sociologists who solely rely on generalized linear models are likely to 

assume that explanatory variables linearly affect outcome variables such as income. 

However, we cannot know whether a generalized linear model is a true probability model 

for true distribution since we can never know the true distribution. If we consider the 

human capital theory as a verbal model or generalized linear model, we can never make a 

non-linear prediction like Proposition 2. The hypothesis that simply income is an 

increasing function of p and b may not be true. Intuitively, an interest rate b enhances 

the impact of success probability on economic growth. However, Proposition  2 claimed 

that there is a range in which the average of capital (income) distribution becomes a 

decreasing function of the probability p. 
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Figure 5: Average of capital distribution with 10],85.0,1.0[,10 0  ybn  

(reprinted from author’s previous work; Hamada 2016). 
 

Figure 5 illustrates the nonlinear relation between success probability p and 

average of capital distribution under a specific constant b. As the right panel of Figure 

5 shows, the average of capital distribution is not a monotone function anymore when 
)1e/()1e( 22 b . This suggests that when we attempt to explain outcome variables 

theoretically, a generalized linear model is not always the best choice because 

Proposition 2 implies that the parameter of the outcome variable is not a monotone 

function of explanatory variables.  

Many quantitative researches in sociology assume a generalized linear model 

without theoretical reasoning because it is easy to estimate the parameters of outcome 

variables. Certainly, it was very difficult for us to estimate the parameters for theoretical 

models such as the generative model of income distribution. However, by development 

of probabilistic programing language such as BUGS, JAGS, or Stan, Bayesian modeling 

with MCMC method allows us to estimate the parameters for complicated models that 

cannot be expressed by the generalized linear model. We will show that the stochastic toy 

model has a strong affinity to the Bayesian statistical analysis in next section.     

 

3. Bayesian statistical analysis 
 

3.1. Statistical model based on the toy model 
We construct a statistical model based on the mathematical toy model described in the 

previous section. To facilitate comparison, we also define model 0 and model 3 as 

non-theoretical models. Hereafter, for computational convenience, the outcome variable 

Y is defined as a logarithmic form in the data and models. Therefore, in our statistical 
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model, we assume that the logarithm of capital Y is subject to normal distribution without 

loss of generality.  

[ ] ~ ( , ) 1,2, , (individual)
~ Uniform( 2,2)
~ Uniform(0,2)

Y i N i N 






K

 

Next, we define the baseline model (model 1) as follows.  

 
Note that 1q p  . It is extremely important that model 1 has theoretically defined 

parameters   and   that are given by Proposition 1, the functions of endogenous 

parameters of our toy model. In this sense, model 1 represents theoretical model. Since 
the parameters p  and b  are probabilities, we assume their prior distributions are both 

subject to beta distribution. Note that the parameters p  and b  are not observable, and 

that posterior distributions of p  and b  are estimated by the MCMC method. In model 1, 

we assume 0y  and n are constant ( 0 10, 10y n  )   

Next, we define the hierarchical model (model 2) as follows.  

 

Model 2, same as model 1, represents theoretical model since it has the parameters given 

by Proposition 1. In model 2, Index i stands for individual, j for sex, and k for age 
respectively.   and   are functions of latent parameters p and b. Additionally, p and b, 

whose prior distributions are beta distributions (in this model, it is equivalent to uniform 
distribution), are clustered by age and sex. As a result,   and   are also clustered by 

age and sex. Model 2 looks complicated, however it is just a clustered version of model 
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1.   

Intuitively, the hierarchical model 2 can be expressed as the following diagram in 

Figure 6. 

 
Figure 6: Bayesian model of income distribution.  

Index i stands for individual and k for age. 
 

We assume that jk  and jk  have a group-level variance, since individuals in the same 

age group experience nearly equal times of random chance, and male workers have more 

advantages in acquiring human capital than female workers empirically. 

Finally, we define a linear model (model 3) as follows.  

 
Model 3 represents a typical simplified linear model.   

 

3.2. Data 
We used the following variables from the SSM2015 dataset: 

Y: individual income (logarithmic scale)  

Sex: male or female (0 for female and 1 for male in model 3) 

Age: 20–80.   

Sex and Age are used for clustering parameters in model 2. 
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3.3. Result of MCMC estimation 
We estimate posterior distributions of parameters by MCMC method. R (version 

3.4.1) and Stan (version) are used for computation. Additionally, Rstan (version 2.16.2) 

and loo (version 1.1.0) package are used for the implementation of Stan model from R 

and computation of a WAIC and a leave-one-out cross-validation. The MCMC settings 

are chains=3, warmup=1000, and sampling=1000.   

 

Table 1: Summary of MCMC samples of parameters. 

 model 0 

 mean 2.50% 97.50% n_eff R̂  

mu 5.36 5.339 5.382 3000.000 1.000 
sigma 0.899 0.884 0.915 3000.000 1.001 

 model 1 
mu 5.36 5.338 5.381 3000.000 0.999 
sigma 0.899 0.884 0.914 1369.915 1.001 
p 0.919 0.917 0.92 1770.568 1.000 
b 0.478 0.474 0.482 1545.447 1.000 

 model 3 
b0 5.193  5.144  5.240  1152.432  1.002  
b1 0.885  0.847  0.924  938.618  1.002  
b2 -0.008  -0.009  -0.006  1591.467  1.000  
sigma 0.772  0.758  0.787  1442.755  1.001  

 

 

Table 1 summarizes the distribution samples of parameters we obtained from 
MCMC estimation. Since we estimate 61( ) 2( ) 2( , ) 244age sex p b    posterior 

distribution of parameters p and b, we omit information of model 2 from Table 1 and 

show the graph of mean and standard deviation in Figure 7, rather than showing 

unnecessary long tables. 

In Figure 7 and Figure 8, the error bar indicates the standard deviation of posterior 

distribution of the parameters. All R̂  of parameters in model 2 are under 1.035; thus, 
the MCMC sampling can be seen as converged.  
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Figure 7: Posterior distribution of p (success probability of random chance) 

computed by MCMC. Age: 20–80, female and male. 
 

Approximately, the success probability p for males is slightly larger than that for females 

in the area of over 30. The success probability p is almost invariant from age or slightly 

decreases with age. Meanwhile, the interest rate b is almost the same among both males 

and females, and decreasing with age in general. With respect to the mean level, the 

interest rate b decreases from around 0.3 to 0.1 as age increases. Furthermore, the 

variance of interest rate b is decreasing with age. 
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Figure 8: Posterior distribution of b (interest rate) computed by MCMC.  

Age: 20–80, female and male. 
 

3.4. A comparative analysis of models 
We approximately computed the widely applicable information criterion 

(WAIC; Watanabe 2010) and the leave-one-out cross-validation (LOO) from MCMC 

samples. WAIC and LOO are methods for estimating pointwise out-of-sample prediction 

accuracy from a fitted Bayesian model using the log-likelihood evaluated at the posterior 

simulations of the parameter values (Vehtariy et al 2017). 

In Table 2, “elpd_waic” and “elpd_loo” are expected log point-wise predictive 

density, “p_waic” and “p_loo” are estimated effective number of parameters. “waic” is 
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converted to the deviance scale, namely waic= 2  elpd_waic. Similarly, “looic” is 

converted to the deviance scale, thus looic= 2  elpd_loo. 

 

Table 2: Summary of WAIC and leave-one-out cross-validation.  

 
model_0 model_1 model_2 model_3 

  Estimate SE Estimate SE Estimate SE Estimate SE 
elpd_waic -8586.2 68.6 -8586.2 68.6 -7142.9 85.8 -7590 80.3 
p_waic 2.4 0.1 2.4 0.1 327.5 19.4 5 0.2 
waic 17172.4 137 17172.4 137 14285.8 172 15179.9 160.5 

         elpd_loo -8586.2 68.6 -8586.2 68.6 -7154.1 87.1 -7590 80.3 
p_loo 2.4 0.1 2.4 0.1 338.7 21.3 5.1 0.2 
looic 17172.5 137 17172.4 137 14308.2 174 15179.9 160.5 

 

The estimated effective number of parameters of model 0 and model 1 is both 

equal to 2.4. An estimated effective number of parameters for WAIC defined as  

( )
2

1

ˆ [log ( | )]
N

t
waic i i

i
p V f x 



  

which is asymptotically equal to the number of unrestricted parameters  (Gelman et al. 

2013; Toyoda 2017)7. The WAIC of model 2 is smaller than model 0, model 1, and 

model 3, which implies that the clustered model based on the theory may have better 

predictive accuracy than other models without theory.  

 

4. Conclusion 
 

In the present paper, we have proposed a general theoretical framework called the 

Bernoulli core approach. We tested empirical validity of one of sub-models, the 

generative model of income distribution by constructing Bayesian model. As a result of 

analysis, we have shown that our model can have better predictive accuracy than black 

box linear model in terms of WAIC and the leave-one-out cross validation. The 

mathematical toy model provides not only good predictive accuracy but also interesting 

implications about latent parameters such as success probability and interest rate. 

                                                 
7 Readers may wonder why p_waic of model 0 and model 1 are equal as ( , )   are the parameters 
for model 0, while ( , , , )p b   are those for model 1. We conjectured that the estimated effective 
number of parameters are same because  and   are deterministic functions of p and b in model 
1. The estimated effective number of parameters of model 2 is 327.5 because we used many 
parameters clustered by age and sex. 
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The flexibility of Bayesian modeling may facilitate us to integrate mathematical 

toy models that represent specific sociological and economic theory and statistical 

empirical analysis. 
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Appendix 
Stan code for estimation of model 2 is the following8: 

 
data{ 

int N;// sample size 
int K;// range of age 
real y[N]; //log of individual income 
int age[N]; 
real y0; // initial income 
int sex[N]; 
} 

 
parameters { 

real <lower=0, upper=1> p[2,K]; //clustered by sex and age  
real <lower=0, upper=1> b[2,K]; // clustered by sex and age 
real <lower=0> n[K];  
real <lower=0> s;// variance parameter for n 
} 

 
transformed parameters{ 

//two kinds of mu and sigma are defined for male and female  
real mu[2,K]; 
real sigma[2,K]; 
for (i in 1:2){ 

for (j in 1:K){ 
   mu[i,j] = log(y0)+n[j]*log(1-b[i,j])+ 

log((1+b[i,j])/(1-b[i,j]))*n[j]*p[i,j]; 
   sigma[i,j] = sqrt(n[j]*p[i,j]*(1-p[i,j]))* 

                                                 
8 I referred to excellent examples of Stan code from Matsuura’s textbook (Matsuura 2016).  
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log( (1 + b[i,j] )/(1 - b[i,j])); 
   }# for loop of index j 
  }# for loop of index i 

}#transformed parameters block ends here  
 
model { 
for (i in 1:K){ 
 n[i] ~ normal(19+i,s); 
 } 
for (i in 1:N){ 

y[i] ~ normal(mu[sex[i]+1,age[i]], sigma[sex[i]+1,age[i]]);  
} 

  }# model block ends 

 

 




